

M
A

Y
 2

0
2

2

C
a

m
e

r
o

n
 M

a
in

Project Report

CSC2034

2
0

0
4

2
2

5
5

2
2

CSC2034 | Project Report Cameron Main | 200425522

1

Contents
Abstract ... 2

What Was Done & How .. 3

Character Teleportation .. 3

Returning Ghosts .. 4

Player Lives ... 5

Implementing UI ... 6

Collection of Game Screenshots ... 8

UI Logic .. 10

Displaying & Saving Scores ... 11

Extension Tasks ... 13

Results & Evaluation .. 19

Conclusion ... 20

References .. 21

CSC2034 | Project Report Cameron Main | 200425522

2

Abstract
This project details exactly how I implemented my own Pac-Man style game within the Unity

game engine. After being provided with a basic ‘starter-kit’ scene containing limited scripts, I

was presented with the task of finishing the game with the following feature requirements:

I was able to implement each of these requirements successfully in my game. Furthermore, I

expanded upon the base requirements and opted to complete some further extension tasks.

These tasks included the creation of a minigame, adding a stylised theme to the game and

giving the ghost characters distinct personalities.

Figure 1 Project Task Requirements

CSC2034 | Project Report Cameron Main | 200425522

3

What Was Done & How

Character Teleportation
I began with the first requirement of enabling “teleportation” from one side of the level to the

other. The “teleporting” was simply a case of changing the transform properties of an object.

Two box colliders were used with an OnTriggerEnter() function so when the player or a ghost

enters, they move from one side to the other while maintaining their velocity.

As figure 2 shows, the Teleport.cs script determines whether it is the player teleporting or a

ghost. I originally did not make this distinction and attempted to transform both in the same

manner. However, since the ghosts are NavMeshAgents, a bug occurs where they do not

arrive at the specified location after a transform. Therefore, the ghosts have the

NavMeshAgent component temporarily disabled during the transform, then enabled again

after.

Figure 2 Code Snippet: Character Teleportation

CSC2034 | Project Report Cameron Main | 200425522

4

Returning Ghosts
Next to be implemented:

• Ghosts should return to the centre of the maze to be restored after having
been 'eaten' by a powered-up Fellow.

I originally implemented this by the same “teleportation” methods as previously mentioned.
However, I preferred the mechanics of the original Pac-Man game where the ghosts slowly
return to the ghost house while in a ‘death phase’. This creates a less jarring playing
experience as objects are not popping in and out over the player’s screen.

Figure 3 demonstrates how this was achieved. In conjunction with a GhostManager to serve

as an interface, each of the ghosts are now able to have multiple distinct states. They can be

Figure 3 Code Snippet: Returning Ghosts

CSC2034 | Project Report Cameron Main | 200425522

5

alive (false isDead boolean), dead, hiding or respawned with the above logic determining

when each can enter the next state.

Breaking the game down into having player and ghost managers to serve as an interface

between them and the game object was centrally important to creating a modular game that

I could easily build upon. For example, creating additional ghosts was simple as they could

each inherit the same states but make small modifications to behaviour to develop the

distinct personalities. Details of this regarding the first extension task are later discussed.

Player Lives
Another requirement for the game was:

• The player should have multiple lives, with the game resetting the location
of the Fellow and Ghosts at the start of each 'life'.

Figure 4 Code Snippet: Player Lives

CSC2034 | Project Report Cameron Main | 200425522

6

Figure 4 shows code derived from the Fellow script and illustrates the logic that occurs

when the player collides with a ghost. If the player does not currently have a powerup, a life

is lost and the player is repositioned to their start position. The final if statement determines

when the game lose condition for the player and runs the game over UI screen.

Implementing UI
It was at this point in the project I began to implement my own UI system so the player’s

lives could be displayed on screen. The UI already in the project was rather basic and used

Unity Legacy text that looked too blurry. Upon searching the Unity Manual, I discovered

TextMeshPro (TMP). The standard in quality between the two is exemplary so opted to use

TMP for the rest of my project. Figure 5 shows a comparison of the two.

Despite this not being a specified requirement, having clear and legible text not only

improves legibility, but also facilitates a higher standard of quality and adds polish to the

game. From this, I have now developed a proficiency in creating UI with TMP and confidently

created the remaining UI for the game. This included a screen for the main menu, pausing,

game over, restart, save score and leader board.

Figure 5 Screenshot: Comparison of Default and TextMeshPro UI

CSC2034 | Project Report Cameron Main | 200425522

7

Before moving onto these however, I created the heads-up display (HUD) that overlays on

the game to display the players current score, the all-time high score, the level and the

number of lives remaining. As per the requirement of:

• The game should have a user interface, informing the player of the current
score, best high score, life count, current level, and so on.

I consciously stuck with the yellow theme throughout and aimed for a consistent design.

Also opting for the Roboto font for its large bold lettering and modern aesthetic. Each of the

following UI screens were created with TMP and operate upon a Canvas with the ‘Screen

Space – Overlay’ render mode.

Sticking with a consistent theme was a deliberate effort to adhere to one of Nielsen’s ten

usability heuristics for good UI design [1]. In conjunction with ‘visibility of system status’ by

adding hover animations to buttons, the system provides immediate visual feedback to the

user.

Current Score

All-time High

Score

No. Lives Remaining

Current Level

Figure 6 Screenshot: Labelled Illustration of In-Game UI

CSC2034 | Project Report Cameron Main | 200425522

8

Collection of Game Screenshots

Figure 7 Screenshot: Main Menu

Figure 8 Screenshot: Leaderboard

CSC2034 | Project Report Cameron Main | 200425522

9

Figure 9 Screenshot: Pause Menu

Figure 10 Screenshot: Save Score Menu

CSC2034 | Project Report Cameron Main | 200425522

10

UI Logic
The logic to determine which screen is displayed exists withing the main game update

function of YellowMellowFellow.

Through the use of a switch statement, I broke the game down into further states to run

separate functions depending on the current game state. Thus, whenever the game state is

changed, the corresponding function is called where the correct UI can be displayed or logic

executed.

Figure 11 Screenshot: Game Over

Figure 12 Code Snippet: Game State Switch Case

CSC2034 | Project Report Cameron Main | 200425522

11

For example, here is the functions for starting and enabling the Pause menu:

Displaying & Saving Scores
The final requirement for the game was to have the ability to save scores:

• New high scores should be managed, so that they can be saved for later
plays of the game.

I interpreted this as to have a system that writes scores to a local save file, allowing every

score to be viewed in game as a player ordered on a leaderboard.

To begin with, I created a TMP Scroll View seen on figure 14 to house the leaderboard text.

The text was read from the score file to the game, sorted by highest to lowest and displayed

into the Scroll View.

Figure 13 Code Snippet: Pause Menu Logic

CSC2034 | Project Report Cameron Main | 200425522

12

Figure 14 Code Snippet: Read & Display Scores Logic

CSC2034 | Project Report Cameron Main | 200425522

13

The writing to the file is done via the WriteSave function that takes the name and score from

the main game script, and writes a new line in the existing highscore file before closing it. As

a result, saved scores are permanent after a player decides to save their score across

multiple compiles.

Extension Tasks
My Pac-Man replica game was now in a somewhat finished state so I began work on some

extension tasks. One such extension was that the game should include multiple ghosts of

distinct “personalities”. Further reading of The Pac-Man Dossier by Jamey Pittman revealed

the true behaviours of the Pac-Man ghost A.I.. Firstly, ghosts are in one of three mutually

exclusive modes of behaviour during play: chase, scatter and frightened [2].

In chase mode, the ghost is given the task of attempting to find and ‘attack’ the player

throughout the maze. Scatter mode causes them to dissert chasing the player to temporarily

go to specified “home” corner locations in the maze before returning to chase mode again.

Finally, ‘frightened’ occurs when the player consumes a powerup and the ghosts become

vulnerable to the player and wander aimlessly.

Two of these modes were already implemented so only an additional scatter mode was

required. I achieved a scatter mode adding empty game objects to the scene and using their

transforms to act as checkpoints for each of the ghosts.

Each time the level loads, these points are stored in an array for each ghost. Therefore, when

in scatter mode, each one is sequentially selected as the A.I. agent’s target position and the

ghost can loop them until the scatter timer expires and behaviour state changes.

Figure 15 Code Snippet: Saving Scores

Figure 16 Code Snippet: Logic behind retrieving 'scatter markers'

CSC2034 | Project Report Cameron Main | 200425522

14

This is the core logic behind

the red ghost known as ‘Blinky’.

Almost all of the logic is shared

among the ghosts except for

key personality traits such as

how the ghost moves to the

player.

Blinky also gets a 5% speed

boost when the player reaches

a specified pellet threshold.

 Figure 17 Code Snippet: Ghost 'Blinky' logic

CSC2034 | Project Report Cameron Main | 200425522

15

Ghost ‘Pinky’ documentation

determines that the A.I. should aim to

move four “tiles” ahead of the players

facing direction.

My implementation of this was not

exact as this project is a 3D game

that is not built upon a 2D tile system

in the same manner of the original

game. However, using 4 Unity units

withing Vector3 sufficed.

‘Inky’ is perhaps the most interesting ghost behaviour as it utilises two positions. Inky

behaves like Pinky but instead four positions ahead, its only two. The difference of this value

with Blinky’s current position is then used to determine where Inky should move towards.

Figure 18 Code Snippet: Ghost 'Pinky' logic

Figure 19 Code Snippet: Ghost 'Inky' logic

CSC2034 | Project Report Cameron Main | 200425522

16

‘Clyde’ is the final ghost. This ghost’s behaviour is simple as it only chases the player when

more than eight units away.

An advanced extension task I completed was that of implementing a strong visual style

through the combination of textures, material, sound, skybox and UI system.

As previously illustrated, the UI system of the game facilitates a clear system design where a

bold and strong aesthetic is carried throughout the game. Furthermore, the amalgamation of

UI coinciding with the addition of a space skybox sets the game in an interesting but

relevant setting. The traditional game has no background but making the creative decision

of add a 3D skybox paid dividends to the theming.

I downloaded and imported the free skybox through the Unity Asset Store and, with some

minor tweaking, was operating well. Importing packages this way is a new skill developed

from this and I am now confident in importing assets from the Unity store for future

projects.

Figure 20 Code Snippet: Ghost 'Clyde' logic

Figure 21 Screenshot: Editor view illustrating aesthetic changes

CSC2034 | Project Report Cameron Main | 200425522

17

In addition, different music tracks were added to the game to contribute to the game’s

atmosphere. Two copyright free electronic songs were used to fit the theme and feel of the

game. A steady one for the main menu and a more tense sounding track for when in game

to match the gameplay.

Another change I intended was to replace the ghosts default capsules with models but I was

unsuccessful in finding appropriate free models. Thus, I simply created a material and

painted each one their corresponding colour. In regards to the maze, a custom material

derived from a shader was used on the wall prefab for the level. The intent was to have a

‘Tron’-like grid shader to fit with the dark space theming. I opted for a shader over standard

textures due to the modularity gained from seamless colour customisation or modifying line

frequency and thickness. Reading The Book of Shaders by Patricio Gonzalez Vivo offered

significant insight to shaders and furthered my understanding of the topic. Having already

used Unity prior to this module, deciding to still push myself to new territory regarding

shaders made sure I was always learning and developing new skills.

Likewise, continuing to push myself further meant I was looking to tick more extensions off

the list. I decided upon attempting the remaining advanced extension; creating a minigame.

For this, I wanted to build it from the ground up in a new scene. The game I settled on was a

clone of the 2014 hyper-casual mobile game Flappy Bird. In order for it to fit the Mellow

Fellow styling, I continued to use the same UI, Skybox and materials. The scene is loaded

with the SceneManager when the player clicks the ‘Flappy Fellow’ button.

In order to simulate continuous movement, the ground plane prefab is instantiated and

gradually moved along from right to left of the camera while the player jumps stationary on y

axis. After a specified number of seconds, the plane is then despawned off camera while a

new instance replaces it at the other end of the conveyor belt. Despawning the objects was

imperative otherwise a memory leak would occur as they objects would be produced

infinitely, hindering performance or even causing a crash.

Figure 22 Screenshot: In-game view of Flappy Fellow minigame

CSC2034 | Project Report Cameron Main | 200425522

18

The pillars prefab operates in a comparable fashion except it utilises randomness to spawn

the gate height. Having the pillars spawn at regular intervals but random height is what

generates the fun of the game as no two levels are ever the same. Consequently, promoting

replayability and enjoyment for the player as they aim to beat their high score.

Figure 23 shows the code used to instantiate each pillar to a random transform within a

suitable range that the player can realistically get through.

One issue that arose with this minigame regarded the movement of the player. I originally

added a force to the rigidbody of the player in an upward direction. Although this worked, the

physics were unrealistic. After jumping, the player slowly glided down in a slow linear

motion, where as in the original Flappy Bird, the player falls at an exponential rate.

Online tutorials and the Unity Manual documentation explained what linear interpretation

(Lerp) is in Unity. Further reading lead me to understand lerps mathematical function to

return a value between A and B at a point on a linear scale [3].

Figure 23 Code Snippet: Pillar Spawning Logic

CSC2034 | Project Report Cameron Main | 200425522

19

Utilising Lerp is a pivotal tool for a game developer relating to aspects of a game, so having

this now under my belt will definitely be a huge benefit.

Results & Evaluation
As the screenshots, code snippets and final artefact demonstrate, I have been able to

produce not only a fully playable game going beyond the initial specification, but one that is

immersive and enjoyable. The player is greeted with the main menu, where they are

presented with a series of options to either: play, see leaderboard, play the minigame or exit,

see figures 7-11.

The main game plays exactly like the traditional Pac-Man game with each ghost having their

own behaviour states and unique characteristics. The only difference being it is one single

‘level’ that is repeated once the pellets are cleared by the player with all lives remaining, as

per requirement three. Characters can ‘teleport’ from one side of the level to another through

the ‘tunnel’. After three deaths, the player is given the option to save their score to a local

leaderboard. All the while, key game data is displayed on screen with appropriate UI.

The ‘Flappy Fellow’ minigame provides an entirely different gameplay experience to the

player. Since this extension task was completed in the latter stages of the project, it is not as

well polished as the main game. The core mechanics and scoring work but a leaderboard

similar to the main game was not implemented due to time constraints.

Bugs do occur however. Occasionally concerning the respawning of the characters but

single developer playtesting can only diagnose so many irreproducible bugs. Overall, the

artefact meets each of the necessary criteria as well as the one easy extension and both

advanced extension criteria.

Figure 24 Code Snippet: Two physics logic used for player movement
in the minigame

CSC2034 | Project Report Cameron Main | 200425522

20

Conclusion
A comprehensive summary of the work done; clear suggestions for future work.

Demonstrates reflective thinking on how the project went, including positive and negative

aspects.

For the most part, the project was tremendously successful as the artefact met all the

necessary requirements. This alone developed my proficiency with Unity and C# scripting

immensely. I have since gained confidence and knowledge in an assortment of tools

regarding game development. Both in the context of Unity specific game engine tools, such

as creating prefabs, as well as the broader game development aspects like level design.

I then stretched myself further with the more demanding extension tasks. Being fully

independent particularly for these tasks was a challenge as most of the work required was

never covered during tutorial sessions. Implementing these displayed that I was up to the

challenge, willing and capable of finding external sources of information to research the

relevant topics.

Despite all the positives, there are plenty of mistakes I made that I am able to learn from.

One such error was failing to organise the project well enough. I decided to introduce a

Kanban board late into the project and it did not offer much value. Mostly, it was difficult to

keep track of what bugs were not fixed or what I was last working on since it would often be

some days between working on the project. Crucially, I falsely believed that since it was a

relatively small single-developer project, I could manage since team communication

wouldn’t be an issue. Although the project turned out well, if the deadline was tight the

project could have failed from my own underestimations. Going forward, I will prioritise

planning with the upmost importance.

CSC2034 | Project Report Cameron Main | 200425522

21

References

[1] J. Nielsen, "Ten Usability Heuristics," 2005.

[2] J. Pittman, "The Pac-Man Dossier," Game Developer, 23 Feb 2009. [Online]. Available:

https://www.gamedeveloper.com/design/the-pac-man-dossier. [Accessed May 2022].

[3] J. French, "The right way to Lerp in Unity," gamedevbeginner, 13 Apr 2020. [Online]. Available:

https://gamedevbeginner.com/the-right-way-to-lerp-in-unity-with-examples/. [Accessed May

2022].

[4] P. G. Vivo, The Book of Shaders, 2015.

